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A METHOD OF INVESTIGATING WEAKLY NON-LINEAR INTERACTION
BETWEEN ONE-DIMENSIONAL WAVES®

A.V. KRYLOV

A method of constructing asymptotic approximations of wide classes of
solutions of weakly non-linear systems is proposed based on the averaging
scheme developed in /1-3/.**(**See also: Krylov A.V. and Shtaras A.L.
Internal averaging of multidimensional weakly non-linear systems along
characteristics, Dep. in LitNIINTI, 10.11.86, No.1750, 1986). The method
enables one to obtain the conditions for the asymptotic decay of systems
described by the Burgers, Korteweg-de Vries and similar scalar equations,
and also enables one to investigate problems in which this decay does not
occur. As an example we investigate the propagation of perturbations in
an elastic non-uniform tube. The interaction between two waves is
considered and the conditions for resonance are obtained.

1. Non-linear wave phenomena are usually studied using simplifying assumptions of a
heuristic form. Hence, a theoretical justification is necessary as well as an investigating
of the limit of suitability of the solutions obtained.

Suppose the solution of the quasilinear system

Ut + 4 (U) Ux =0, U= (ulr sy un)a 4 (U) == ” a;j (ulv e ey un) ” (11)
is close (0 <e<< 1) to a certain state of equilibrium (U, = const)
U=U,+ eU,(t x, 8 (1.2)

We assume that the constants (const) are everywhere independent of g; the subscripts i
and j take the values 1[2,...,n5 X
If problem (l.l), (1.2) is hyperbolic (/4/, p.23), then by making the replacement J —

RU,, R = | ry|, det R £ 0 it can be reduced to the form
Vi+ AVe=—eRA [TWIR W, .+ o(¢) (1.3)
A = diag {Ay, . . ., A} = RA (Uy) R

n

A4,[U)) = dAd(gO) U= “ 2 [5% aij (Uo):luu: “

k=1

The initial condition

*prikl.Matem.Mekhan.,51,6,933-940,1987
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U0, 2,8) = @ (2) = (91 (2), - . ., ¢ (2)) (1.4)
specifies the long-wave solution of the problem (the wavelengths O (1/A;) = const considerably
exceed their amplitude O (e)). 1In the linearized theory we confine ourselvesto the approxi-
mation obtained from (1.3) when & =0

n n

=R D rur (5 — M), - 2& Pk (£ — At)) (1.9)

This approximation describes n non-interacting linear hyperbolic waves (/5/, p.9) travel-
ling with velocities i, ..., A,.
In the case of one equation (n = 1) the problem has the form

vy + Ave = gfvo,, v (0, z,€) = vy (x), f = const
and its solution can be represented as the implicit function
v (¢, e) = vy (x — At + etfv (¢, z, €) (1.6)

The solution of Eq.(l1.6) describes a non-linear wave travelling with velocity A with a
slowly varying profile (as a function of &tf). Approximation (1.5) only describes the solution
when et<€1 or t<<€e¢!, although a smooth solution (continuously differentiable) exists for
t= 10,0 () (when ¢>0(e?) the solutions are, generally speaking, discontinuous, and are
not considered here). Hence, it is of interest to construct asymptotic solutions of problems
of the form (1.3) that are suitable when ¢t ~ &,

2. 1In /1-3/ (and also in the footnote on the previous page) a method is given for the
asymptotic integration of weakly non-linear hyperbolic systems with periodic initial conditions.
The same idea also enables us to construct the zeroth approximation of wider classes of
problems.

Consider the Cauchy problem for a weakly non-linear system

du \
1 a du
5 +?», 5 hsfj(t, Zoltyy . ,u,,,——d';’ T ,e) 2.1)
u; (0, z, ¢ )auoj(x,e),j=1,2,...,n,0<e<1 (2.2)

The functions f;, u,, are fairly smooth, are bounded for all {t, z) = R*, and are con-
tinuous as the point & = 0.
Problem (2.1), (2.2) can be set in correspondence to the averaged system

v

—-—M i v y) =ue,(p0), t=¢et, y=z—Mt (2.3)
T

Myl = lim 7 Sf,(s Uy Ay 0y (T g 4 (g — Ay )+

vp (v Y+ ()»] — Ap)s), + ooy OUK(T, Yy (A — M) $) Oy, - .-, 0) ds

If the above assumptions are satisfied, then for appropriate classes M of initial con-
ditions (2.2) the solution of the averaged system (2.3) asymptotically approaches the accurate
solution uniformly (as &— 0) with respect to te& [0, O (e7)]

lim max sup u;(t, z,8) —v;(et,r — Ait) | = 4
e~0 j (M)e[o,t../e]xRI j( ) j( j)l (2)

To==const >0

The classes M, in particular, may include the following: C,! (R)— a set of functions
g (r) =C' (R) which possesses the property lim g (z) = ¢z = const, lim dg (z) /dx = 0 (] 2 |— oo);
Cis' (R) — a set of A-periodic functions g (z) = C' (R); C(vl) (R) — a set of almost periodic

functions £ (z) € €' (R) with Fourier indices {v,}
g@)~ 3 giexp {iva), i—=y—1
ez

For problem (1.1)-(1.4) the averaged system can be written in the form

k=21 m=1 [

It follows from the definition of the operator M, that

], 2 (0, ) = uo; (y;, 0) (2.5
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dv du . T
M, [uj .a.y.f:} =g (2.6
dv. dv
M [vi _-ayj_ J =M, [vil -
7
dv,
M,{v_i c'?y: ]EG, Pk j

Hence, for ug; (¢, 0) == €' (R) system (2.5) can be split into the scalar equations

ij 0”}
”éTF“fii:‘UJ—ay';‘v 5 (0, y5) == 1oz (13, 0) @7
Here we have assumed that
. T
(tigj (2, 0)) = lim 57 S uy; (2, 0) dzr=0 (2.8
T Pt
and, moreover, A;wAi; when iskj. Hence, the solutions of problem (1.3} from the class

€x! can be split into simple waves.

Note that by using the transformation 7; = v; — {uy;> the problem can be reduced to the
case when (2.8) is satisfied, since (v (t, 2)> == const = {ug;>. Henceforth, we will assume that
limitations of the form (2.8) are also satisfied, although this is not essential.

The asymptotic form (2.7} is identical with the well~known asymptotic reduction method
/6-8/. A proof of the decay of the solution into simple waves was obtained in /9, 10/ under
the condition that @ (x) in (l1.4) approaches zero fairly rapidly (exponentially) as |z} co.

For the initial conditions from the classes C,! and ClW:” system (2.5) can be split

into scalar Egs.{2.7) only in special cases. The conditions for the decomposition follow from
the properties of the functions of (4! and C}vgl and Egs.{2.5}, (2.6) and {2.8). If

u; {x) &= Cf\}, (R), - it is sufficient that

Vlkv(mezvllk“l“ llml#O: (2‘9)
(s — M) LA 5 (bg = T LAy Vit hotmatj

If  ug (z) = Cyyy (R) it is sufficient that

Vi I & 2| Wiy |+ [ Vouty | 7 02 (2.10)
Vil (A — ) 7= Vour,, (ks — Am)s Visthstme]

By representing the solutions of the problems in the form of formal Fourier series, we
can show that conditions (2.9}, (2.10) denote that there is no resonance.

3. The equations of motion of a liquid in an elastic non-uniform tube have the form

(/11/, p.120)
p (u + wug) = —ps, (08) + (PSu)e = 0, p = P (p) 3.1

Here u,p,p are the values of the velocity, density, and pressure of the liquid re-
spectively, averaged over the transverse cross-section of the tube, and §(p, z) is the cross-
section of area of the tube.

Suppose that the liquid at rest at the instant of time ¢ = () receives a weak perturba-

tion
u (0, 2) = ed, (), p (0, 7) = py+ D, (z}, pp = const >0, 0T &< 1 (3.2)
If, in addition, the ductility of the tube is slightly non-uniform, i.e.
S (p, x) = 8o (p) + 51 (p, 2) + €8, (b, 2) + 0 (e?)

or (we take into account (3.1), (3.2))

S (p,2) =S¢ + & (4 {z) -+ kpy) + 82 (C (2) + B (@) py + 10s°) + 0 (67 (3.3)
where (the subscripts p and p denote the derivatives with respect to p and p, calculated for
P = Pa P = Po)

SO = SO (Po)v A (l’) = gl (Pm 3)9 C (x) = ~§2 (PO! I), Po st P (Po) (3'4)
B (x) = 8P, k= JopPp, 1 = Y3 180ppPp? + SopPop)
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then, by substituting the expressions u = gy, p = po + £p; and (3.3) into (3.1), we obtain,
with an accuracy o (e)r

Pir T oY = &fy uy + Pppelpr = 2€ 3.5

=380 {povitax lpo (B + 2npy) + 4 + 2kp,] — {3.6)
S (01)x — Po [uy (4 + kpy)ls}

g = —{ulx + £10126}

- S ﬂl_{ _._f&]
Liiwreny ek 6—”90 Poo fo

By making the change of variables
w =av+ w, p, = v—alw, @ = e/(ype) & = ¥V Py (3.7)
system (3.5), (3.6) and the initial conditions (3.2) can be reduced to the form
U + ovx = Yge (a7lg + f) = eF, (3.8)
w; — quy = Yee (g — af} = efy
v (0, z, &) = v (2) =Y, [a7'8, (z) + 7, (2)]
w {0, z, &) = w, (x) = Y, [, (z) — ap; ()]

The functions

Fyu=G* (@) v + Gag* (2) s + Gpn* (@) 0 - Gog* (@) w0 + Dyy*vu, +
Dygva -+ Dyvwy ++ Dyy*ww,
K= Zf., 2

can be found by elementary transformations from (3.6) and (3.7). In particular
D2 o= 1, [2 + v — yEpeS,y? + a728], Dyt = aby?
Gyt = = Apo¥Sut, Goot = H3EpeySo™
sz = Yad2Pp (poSo)t, Gag® = —1,PpESy™
=2ypn + v — DK E = E (g} = ypoB (&) + (y—1) A (2}

If constraints of the form (2.8) are satisfied, namely,
o {2)> = (wy (2)) = A (2)) =B (a}) =0

then the averaged system for problem (3.8) is

) T
Fem=Dyto5, + lim - { (6o 0 + 69) B (1. y + 26,9) + (3.9)
T—o
L]
Go* (¥ + 18 W (T, ¥ + 2eys) ds
W == DWW, + lun —1— S {Gy? (2 — ,8) T (7,2 — 2¢45) +
o

Gao? (2 — 15) By (T, 2 — 2¢,5)} ds
yr=r—cif, 2=zt

Hence, sound waves in an elastic non-uniform tube in the zeroth approximation can be
described by the expressions
u == ¢ la? (et, z — ¢yt) + @ (et, x + 1))
p=po+ elf (e, z — a8) — oW (et, z + i)l

where the non-linear waves ¥ and @ are found from system (3.9).

4. TIf the integral terms in (3.9) equal zero, the solution decomposes into simple waves,
described by equations of the form (2.7). This occurs when v, w, < C,!. For the initial
data from (! or C},,” the conditions for the decomposition are similar to (2.9) and (2.10).

Moreover, the decomposition occurs for any initial data in the case of a uniform tube (S =
8 (p)). This can be seen from (3.4) and (3.9).

Suppose v (z), w, (z) < Cit (R) and the functions A4 and B can be represented in the form of
Fourier series

A@) =23 Arexp (i) @.1)
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B (z)= zgz B, exp {ifx}

If among the Fourier factors «a,;, f; in (4.1) there are even numbers, the conditions for
decomposition of the form (2.9), (2.10) are not satisfied and the problem is a resonance
problem. Nevertheless, decomposition can occur in this case also.

Integration by parts in (3.9) leads to the sufficient condition for decomposition

Gml = 1/ 2G(1)2x1 G102 = 1/ zggox
which is equivalent to

Az (y + 1) + Baypp = (4.2)

To analyse EqQ.{4.2) it is necessary to know the explicit form of the coefficients (3.4)
in (3.3). 1In the case of a circular tube with thin walls the cross-sectional area F can be
expressed by the formula (/12/, p.l05)

F—Fy d& p—p 17d p—p\2 a2 ,
=5t (v ) =1 (2.3)

4
where d is the internal diameter, § is the wall thickness, E is the modulus of elasticity
of the material of the walls of the tube, and F, is the cross-sectional area of the tube when

P = Pg- The above theory enables one to investigate the behaviour of sound waves in a weakly
non-uniform tube

d=dy+ edy (z), § = 8o +¢8, (2}, £ = E, + ¢E; (2) (4.4)

From {4.3) and (4.4) we obtain after elementary reduction

o
A@= 7 ddy(z), B@)=122 é,:; ( 3 i) _ Exﬁg:) _ 516:?) )

and from (4.2) we obtain the condition for decomposition

dy 17 Eie By
iy Pobo) | = g+

0

e foel

5. If decomposition into simple waves does not occur, problem (3.9) is of independent
interest. .

Suppose Uy (7)., Wy () & Gy (R), the functions 4 (z)and B (2) can be represented in the
form {4.1), and there are even numbers among the Fourier factors B, . Then in system {(3.9)
the terms calculated by passing to the limit as T-— oo take the form

Yo Py

T aS, on
T L
40080 2n

where o = A;(y + ) + Byype; the summation is carried out over I, i o; = iy =2m 5= 0.
Suppose, for simplicity, that we retain only three harmonics in (4.1)

exp{im 2y + p @ (v, y + p)dp

cl/“.,g gmg

exp (im (22 — p)} ¥ (1,2 — p)dp

3
| 4@ — 3 (a)'sin 2) + a7 cos (2) | <

31
| B(x) — ,21 (b sin (jz) + by cos (j2)) | <1

Then, by making the replacement of variables

FT ) =—aut (T, y), D=u
problem {(3.9) can be reduced to the form

o

u,iieuiu,:fz-gfs cos (2r — @ — s)u¥F (1, & — s)ds ©.1)
0

u (0, 2) == up* (2) &= Cix (R)

ugt (z) = =Y, (@ (x) + apy (2)), w0 () = w, {2)
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e = —Dyt d =168 (4 + BYY)
Ay = a" (v + 1) + b vpo, Br = a* (v + 1) + by*yp,e
@ = arccos [4,/(4,2 + B,Y)]

For the equations of system (5.1), which are close in form to the Whitham equation, well-
known in the theory of non-linear waves (/5/, p.459) in the periodic case, one can investigate
problems connected with the inversion of the waves /13, 14/. System (5.1) also takes into
account non-linear effects, in addition to the inversion just mentioned, as well as changes in
the amplitudes of the waves which arise from their resonance interaction. The approximation
(u*, w”) constructed approximates to the accurate solution of problem (3.8) or (3.1)-(3.3) in
the region (t,z) = Q = [0, vy} X [0, 2r), 14 = const > 0 in which smooth solutions exist (estimate
(2.4) is not justified when Tt > 1,).

Since & does not occur explicitly in (5.1) and Q = O (1), the problem can be solved
by well-known numerical methods /4/, Chapter 3).

wWhen 0<€ 1 <7, inversion of the wave cannot occur, but the initial profiles and
amplitudes of the waves are changed considerably.

In Figs.l-4 we show graphs of the solutions of problem (5.1) for e =1, u,*(r) =sinz, ¢=0
(Figs.1-3), and ¢ =a/3 (Fig.4); the values of the pairs (4, u,”(z)) in Figs.l-4 are as follows:
(4,0), (Y4, sin z), (3, — Y/, sin 21), (4, sin z). The profiles of the waves u*(v,2) for 1,=04 and 7, =108
are represented by the continuous curves l and 2, and the profiles of the waves u~ (1, r) are
represented by the dashed curves 1 and 2 respectively.

The graphs show how different and complex the behaviour of the solutions of problem (5.1)
are compared with the simple waves of the form (2.7).

6. when investigating actual wave processes one often has to take into account the effects
of viscosity, heat conduction, and friction, which are expressed by having second and higher
derivatives in the equations. The scheme for constructing the averaged system (2.3) can also
be applied to such problems.

The equations of plane long waves over a flat bottom have the following form in dimension-
less variables (/15/, p.94)

2z + (Hu)y = & {Mg (HPuz)e — V3 (Hu)pex — (6.1)
HH, (Hu)xx - (zu)x}
U+ 2, = —eun,, 0<<e<€1

where H (z,e) is the specified dimensionless equation of the bottom.

2

Fig.3 Fig.4

If H (z,e) = 1 + &k (z), then by making the change of variables u=vt—v, z=v"4+v,
system (6.1) can be reduced to the form

vt vt = Ye (FF g) + o (&) (6.2)
f = 1/3 (erx - v;x;\‘) —2 (vx“v" — v;v‘) — [h (l)+ —_ v‘)],,

g =" =) (vt —w)

The averaged system for (6.2) has the form
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J - 3, 0 L o N
Fuij:_z_pi;y_-uii G (ayi)3v = (6.3)
o
4~ lim Lsi—[h (vt 4= p) 7% (v, y* = 2p)} dp,
2 e ! Uay:i:
yr=aft¢

1f, for example, h = const, the right-hand side of (6.3) is zero and the system splits
into two scalar Korteweg-de Vries equations, which are identical with those obtained by the
reduction method.

The author thanks A.L. Shtaras for discussing this paper.
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