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A METHOD OF INVESTIGATING WEAKLY NON-LINEAR INTERACTION 
BETWEEN ONE-DIMENSIONAL WAVES* 

A.V. KRYLOV 

A method of constructing asymptotic approximations of wide classes of 
solutions of weakly non-linear systems is proposed based on the averaging 
scheme developed in /l-3/.**(**See also: Krylov A.V. and Shtaras A.L. 
Internal averaging of multidimensional weakly non-linear systems along 
characteristics, Dep. in LitNIINTI, 10.11.86, No.1750, 1986). The method 
enables one to obtain the conditions for the asymptotic decay of systems 
described by the Burgers, Korteweg-de Vries and similar scalar equations, 
and also enables one to investigate problems in which this decay does not 
occur. As an example we investigate the propagation of perturbations in 
an elastic non-uniform tube. The interaction between two waves is 
considered and the conditions for resonance are obtained. 

1. Non-linear wave phenomena are usually studied using simplifying assumptions of a 
heuristic form. Hence, a theoretical justification is necessary as well as an investigating 
of the limit of suitability of the solutions obtained. 

Suppose the solution of the quasilinear system 

uf + A (u) u, = 0, CI = (~1. . . ., u,), A (U) = 11 aij (ul, . . ., u,,) 11 (1.1) 
is close (O( ~<l) to a certain state of equilibrium (U, = con&) 

u == Cl, + EUI (t, J, E) 

We assume that the constantp (con&) are everywhere independent of 
and j take the values 1, 2,...,n. 

If problem (l.l), '(i.2) is hyperbolic C/4/, p.231, then by making 
RU,, R = (I rij 11, det R #O it can be reduced to the form 

l/t + Av, = - ERA, [WV] R-‘V, + D(E) 

A z diag (h,, . . ., A,} == RA (U,) R-’ 

The initial condition 

(1.2) 
E; the subscripts i 

the replacement i = 

(1.3) 

*Prikl.Matem.Mekhan.,51,6,933-940,1987 
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u, (0, z, E) = Q (4 = (cpl (4, . . ., qJn (2)) (1.4) 

specifies the long-wave solution of the problem (the wavelengths 0 (l/h,) = const considerably 
exceed their amplitude o(s)). In the linearized theory we confine ourselvesto the approxi- 
mation obtained from (1.3) when E = 0 

U, = R-’ ( kiI rIkqk (x - h,t), . . . , i ~,k%c @ - ‘,&)) 
k=l 

(1.5) 

This approximation describes n non-interacting linear hyperbolic waves (/5/, p.9) travel- 
ling with velocities h,, . . .,A,. 

In the case of one equation (II = 1) the problem has the form 

U1 + hv, = EfVV,, v (0, 5, E) = vg (lx), f = const 

and its solution can be represented as the implicit function 

v (t, z, a) = v0 (5 - ht + etfv (t, 32, E)) (1.6) 

The solution of Eq.(1.6) describes a non-linear wave travelling with velocity h with a 
slowly varying profile (as a function of et). Approximation (1.5) only describes the solution 
when et< 1 or t<eE-l, although a smooth solution (continuously differentiable) exists for 

t E [O, 0 (e-l)] (when t> O(e-‘) the solutions are, generally speaking, discontinuous, and are 
not considered here). Hence, it is of interest to construct asymptotic solutions of problems 
of the form (1.3) that are suitable when t N 6'. 

2. In /l-3/ (and also in the footnote on the previous page) a method is given for the 
asymptotic integration of weakly non-linear hyperbolic systems with periodic initial conditions. 
The same idea also enables us to construct the seroth approximation of wider classes of 
problems. 

Consider the Cauchy problem for a weakly non-linear system 

$++hj~=Efj(t,X,Ul, . . . . U”,-$ ,..., -f$,E‘ 
% (Ov X7 E) = %f (5, e), j = 1, 2, . _ ., t2, 0 < E .-g 1 

) (2.1) 
(2.2) 

The functions f,, aa, are fairly smooth, are bounded for all (t,s)~ R*., and are con- 
tinuous as the point E = 0. 

Problem (2.1), (2.2) can be set in correspondence to the averaged system 

a”, 
ar = Mj Ifjl! Vj (0, JJj) = Uoj (j/j, O), T = et, Yj= 5 - hjt 

Ip 

(2.3) 

If the above assumptions are satisfied, then for appropriate classes M of initial con- 
ditions (2.2) the solution of the averaged system (2.3) asymptotically approaches the accurate 
solution uniformly (as e-0) with respect to TV [O,O(e-l)] 

limmax 
8-0 j (*,r)El~~~fPlelxRI~l(~~~I~)--ul(~~,~--j~)I=~, 

z,=const>O 

(2.4) 

The classes M, in particular, may include the following: C,' (RI - a set of functions 
g(s)G C’(R) which possesses the property lim g(r)= g = const,lim dg(t) /& = 0 (I z 1 --t cm); 
C.,‘(R) - a set of h-periodic functions B(X)E C’(R); C&) (R)- a set of almost periodic 

functions g(z)E C’ (R) with Fourier indices {v)} 

g(x)- &exp {iv&, i = r/-1 

For problem (l.l)-(1.4) the averaged system can be written in the form 

(2.5) 

It follows from the definition of the operator M,that 
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(2.6) 

Hence, for Uaj (~,o)*? G1(R) system (2.5) can be split into the scalar equations 

au. 
“$. = f,jju, 2 , 

Vj (O, Yj) = TJOj (Yi7 ‘1 
I (2.7) 

Here we have assumed that 

T 

(UOj (I, 0)) G p’--“, &_T Uoj (X9 0) fix=0 s (2.8) 

and, moz-eover, hi+hi when i+j. Hence, the solutions of problem (1.3) from the class 
CR can be split into simple waves. 

Note that by using the transformation Gj = U, - (uoj) the problem can be reduced to the 
case when (2.8) is satisfied, since <v,(r, 5)) = conat = <z+). Henceforth, we will assume that 
limitations of the form (2.8) are also satisfied, although this is not essential. 

The asymptotic form (2.7) is identical with the well-known asymptotic reduction method 
,X-8/'. A proof of the decay of the solution into simple waves was obtained in /9, lO/ under 
the condition that (D(Z) in (1.4) approaches zero fairly rapidly (exponentially) as Irz*I co. 

For the initial conditions from the classes CA1 and C:V,,, system (2.5) can be split 

into scalar Eqs.(2.7) only in special cases. The conditions for the decomposition follow from 
the properties of the functions of Cnl and CtVI) and Eqs.(Z.S), 12.6) and (2.8). If 

uoi (I) E Ct$j (R). it is sufficient that 

If @of (4 E C:vjrr (RI it is sufficient that 

vlk. l,,, E z, 1 l’klk ( + 1 y,,&, 1 f ‘: 

vkl,y (hj - hk)# ymIm (;*j-h,), Vj+k+m+i 

(2.10) 

By representing the solutions of the problems in the form of formal Fourier series, we 
can show that conditions (2.91, (2.10) denote that there is no resonance. 

v4,t L f? 6 I 1, 1 f I 4, I # 0: 
(aj - ak) lkJAk f 0.j - &,) &JA-,, Vj Z k # m + i 

(2.9) 

3. The equations of motion of a liquid in an elastic non-uniform tube have the form 
(/ll/, P.120) 

P (Q + WJ = --Px* W), + (PSU), = 0, p = P (p) (3.1) 

Here u, p,p are the values of the velocity, density, and pressure of the liquid re- 
spectively, averaged over the transverse cross-section of the tube, and S(p,z) is the crass- 
section of area of the tube. 

Suppose that the liquid at rest at the instant of time t=o receives a weak p-erturba- 
tion 

u@,s)==aa,(?), P(&d=Po+Eij,(Z)E), p,=COnst>o, o<t:<f (3.2) 
If, in addition, the ductility ofthetube is slightly non-uniform, i.e. 

S (P, 2) = 6, (P) -t ~3~ (P, s) i- s'% (p, 2) + 0 (e*) 

or (we take into account (3.1), (3.2)) 

3 (P, 3) = s* -t e (4 (2) + Izp,) -I- .Q (C (2) i- B (s) pi f Wl2) f 0 (a? (3.3) 

where (the subscripts p and p denote the derivatives with respect to p and p, calculated for 
P = PO, P = PO) 

so = 30 (PO), ‘4 (4 = s, (PO, 4, c (2) = s, (PO, x), pcl = P (p*) 

s (=) = &P,, k = S,,P,, q = 'i, IS,p,P,,2 + S,,,P,,I 

(3.4) 
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then, by substituting the 
with an accuracy 0 (+ 

By making the change 

expressions u = EU$, p = PO + ep, and (3.3) into (3.11, we obtain, 

of variables 

= av+ w, p1= v - a-lw, cc = c~/(~~~), c1 = f= 

system (3.51, (3.6) and the initial conditions (3.2) can be reduced to the form 

0, + c,v, = '/%e (a-'g + f) 3 eF, 

wt - c,w, = V2e (g - ccf) = er;, 

u (0, 2, e) = Vg (z) = 'i, [a-%, (r) + Pil (2)l 
W IO, 2, E) = WC (X) = ‘/a itil (2’) - a& ($)I 

The functions 

can be found by elementary transformations from (3.6) and (3.7). In particular 

D,,Z = -'I, f.2 i- y - yKpoSo-’ + a-%51, D,,’ = aD,” 

GQ1' = -1/2A~p,ySo-', God = ‘/2Ep,y~o-1 

Gioz = '/,A,P, (poSJ1, 6',,' = --'/~P&S,,-' 

Ir: = &R?? + (27 - 1) k, E = E (cz) = ~$3 izc) -f fy - 1) A (I). 

If constraints of the form (2.8) are satisfied, namely, 

(~0 (t)> = <~a (4> = <A (4> = <B (4) = 0 

then the averaged system for problem (3.8) is 

(3.7) 

(3.8) 

W) 

G,,2 (2 - cxs) Fv (r, z - 2c,s)} ds 
y.c= 5 - c,t, z=x+clt 

Hence, sound waves in an 
described by the expressions 

elastic non-uniform tube in the zeroth approximation can be 

24 = e Ia?7 (et, 5 - c1t) + ii (Et, x + c,t)l 

p = PO + e ig f&t, t - C,t) - a-% (it, 5 f clt)l 

where the non-linear waves 5 and Zare found from system (3.9). 

4. If the integral terms in (3.9) equal zero, the solution decomposes into simple waves, 
described by equations of the form (2-7). This occurs when vet =Jo EC,'. For the initial 
data from CA1 or c&l? the conditions for the decomposition are similar to (2.9) and (2.10). 

Moreover, the decomposition occurs for any initial data in the case of a uniform tube (S = 
s WL This can be seen from (3.4) and 13.9). 

Suppose vo(z), wo(zfECznl(R) and the functions A and B can be represented in the form of 
Fourier series 
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If among the Fourier factors ai+ Bf in (4.1) there are even numbers, the conditions for 
decomposition of the form (2.91, (2.10) are not satisfied and the problem is a resonance 
problem. Nevertheless, decomposition can occur in this case also. 

Integration by parts in (3.9) leads to the sufficient condition for decomposition 

G,1'= '/,G',,,, G,,%= ‘/,G& 

which is equivalent to 

A, (Y -t 1) + B,yp, = 0 (4.2) 

To analyse Eq.(4.2) it is necessary to know the explicit form of the coefficients (3.4) 
in (3.3). In the case of a circular tube with thin walls the cross-sectional area F can be 
expressed by the formula (/12/, p.105) 

(6.3) 

where d is the internal diameter, 6 is the wall thickness, E is the modulus of elasticity 
of the material of the walls of the tube, and FQ is the cross-sectional area of the tube when 
P = PO. The above theory enables one to investigate the behaviour of sound waves in a weakly 
non-uniform tube 

d = db + sd, (s), 6 = & + ~6, (z), E = ED + eE, (I) 

From (4.3) and (4.4) we obtain after elementary reduction 

(4.4) 

and from (4.2) we obtain the condition for decomposition 

5. If decomposition into simple waves does not occur, problem (3.9) is of independent 
interest. 

Suppose %(r), % (3) E&'(R), the functions A (z)and B(r) can be represented in the 
form (4.1), and there are even numbers among the Fourier factors cz> Bt . Then in System (3.93 
the terms calculated by passing to the limit as T-+CQ take the form 

where mPlr = &(y f 1)+ Bk~pa; the summation is carried out over I, k: ai = & = Zm+= 0. 
Suppose, for simplicity, that we retain only three harmonics in (4.1) 

1 A(z)- $J (a~sin(js)+ 
j-1 

a;cos(js)) j <f 

lB(x)- i'(b,'sin(jz) + b,'cos (js)) I<1 
j=l 

Then, by making the replacement of variables 

V(z, y)= - a%+(~, y), W = u- 

problem (3.9) can be reduced to the form 

an 
d 

u$-&e~&u,*=~ 
s 
cos(2~--_--_)~~(t,.z-s)ds 

&(0,x)= ~,*(s)&n (R) 
uO+ (I) = --'/$ (27, (5) + a& (x)), uO- (x) =. U;O (I) 

(5.1) 
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e = -I&=, d = ‘/,c,So-’ (Ae* + B,‘) 
A, = us’ (7 + I) + b; YPO. 13, = az’ (u + 1) + bzh, 
rp = arccos [A2/(_4,* + Bz2)l 

For the equations of system (5.1), which are close in form to the Whitham equation, well- 
known in the theory of non-linear waves (/5/, p-459) in the periodic case, one can investigate 
problems connected with the inversion of the waves /13, 14/. System (5.1) also takes into 
account non-linear effects, in addition to the inversion just mentioned, as well as changes in 
the amplitudes of the waves which arise from their resonance interaction. The approximation 
(a+? a-) constructed approximates to the accurate solution of problem (3.8) or (3.1)-(3.3) in 
the region (t,x)E Q = lO,z,l X [0,2n], T,, = con&> 0 in which smooth solutions exist (estimate 
(2.4) is not justified when r>rO). 

Since E does not occur explicitly in -(5.1) and R = 0 (I), the problem can be solved 
by well-known numerical methods /4/, Chapter 3). 

When O<r<rO inversion of the wave cannot occur, but the initial profiles and 
amplitudes of the waves are changed considerably. 

In Figs.l-4 we show graphs of the solutions of problem (5.1) for e= i,++(r) G sinz, tp= o 

(Figs.l-3), and 'p= n/3 (Fig.4); the values of the pairs (d,u,-(s)) in Figs.l-4 are as follows: 
(4,0), ('i,, sin z), (3, - 1/s sin 2~). (4, sin 5). The profiles of the waves U+ (?il I) for Tl = 0,4 and t2 = U,8 
are represented by the continuous curvesland 2 , and the profiles of the waves u- (Tl, x) are 
represented by the dashed curves 1 and 2 respectively. 

The graphs show how different and complex the behaviour of the solutions of problem (5.1) 
are compared with the simple waves of the form (2.7). 

6. When investigating actual wave processes one often has to take into account the effects 
of viscosity, heat conduction, and friction, which are expressed by having second and higher 
derivatives in the equations. The scheme for constructing the averaged system (2.3) can also 
be applied to such problems. 

The equations of plane long waves over a flat bottom have the following form in dimension- 
less variables (/15/, p.94) 

2, + (Ha), = E (I/, (Pa,), - '1, (Ha), - 

HH, (Ha),, - (&I 
at i-z, = --Eua,, o< r<l 

where H (I, e) is the specified dimensionless equation of the bottom. 

Fig.1 Fig.2 

Fig.3 

If H (I, E) = 1 + eh (5). then by making the 
system (6.1) can be reduced to the form 

Fig.4 

change of variables U = v+ - 

vt* & Us* = l/,e (fT g) -t 0 (e) 

f = - ‘,13 (v+ *x - v&) - 2 (vx+v+ - l&-v-) - [h (v’ - v-)1= 

g = (v+ - v-) (vx’ - v,-) 

The averaged system for (6.2) has the form 

(6.1) 

6, z=v++v-, 

(6.2) 
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If, for example, h = const, the right-hand side of (6.3) is zero and the system splits 
into two scalar Korteweg-de Vries equations, which are identical with those obtained by the 
reduction method. 
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The author thanks A.L. Shtaras for discussing this paper. 
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